Προσδιορίστε την \( \Delta S \) που θα εμφανίσει διασπορά 2 mol \( \text{Fe} \) σε ύδωρ της θερμοκρασίας 25\( ^\circ \)C και 1,5 \( \text{atm} \) αρχικά και 6 \( \text{bar} \) 135\( ^\circ \)C και 7 \( \text{atm} \). Αντιληφθείτε το πρόβλημα με \( \Delta S \)

\[ \ln \left( \frac{T_f}{T_i} \right) \]

\( \Delta S_1 = 2 \text{ mol} \cdot \frac{7}{2} \cdot 8,31 \text{ J K}^{-1} \text{ mol}^{-1} \cdot \ln \left( \frac{180}{298} \right) = 18.3 \text{ J K}^{-1} \)

\( \Delta U = 0 \) αποτελεί ευθύνη 0 ≠ 9 + W ⇒ 9 \( \text{rev} = -W \)

\( dW = -p_dV \Rightarrow -W = \int p_dV = \int_{V_f}^{V_{\text{rev}}} p_dV = nRT \ln \left( \frac{V_f}{V_{\text{rev}}} \right) \)

\( = nRT \ln \left( \frac{p_i}{p_f} \right) \) \( \Delta S_2 = \int \frac{d\ln \theta}{T} = \frac{\theta \text{ rev}}{T} \)

\( \Delta S_2 = nRT \ln \left( \frac{p_i}{p_f} \right) = nR \ln \left( \frac{p_i}{p_f} \right) = \)

\( = 2 \text{ mol} \cdot 8,31 \text{ J K}^{-1} \text{ mol}^{-1} \cdot \ln \left( \frac{1,5 \text{ atm}}{7 \text{ atm}} \right) = -25.6 \text{ J K}^{-1} \)

\( \Delta S = (18.3 - 25.6) = -7.3 \text{ J K}^{-1} \)

Απονέμετε μεγάλη Μπάτερν στους άνθρωπους. Φανερώστε γιατί \( \Delta S > 0 \)
\[ \Delta_f H^\circ_{\text{H}_2\text{O}}(e) = -285 \text{ kJ mol}^{-1} \]

\[ \Delta_f H^\circ_{\text{CO}_2(g)} = -393.57 \text{ kJ mol}^{-1} \]

\[ \Delta_f H^\circ_{\text{H}_2\text{O}(l)} = 46 \text{ kJ mol}^{-1} \]

\[ \Delta_f H^\circ_{\text{O}_2(g)} = -285.83 \text{ kJ mol}^{-1} \]

\[ \Delta_f H^\circ_{\text{N}_2(g)} = 138.684 \text{ kJ mol}^{-1} \]

\[ \Delta_f H^\circ_{\text{H}_2(g)} = 104.6 \text{ kJ mol}^{-1} \]

\[ \Delta_f S^\circ = \Delta_f H^\circ - \Delta_f S^\circ_{\text{H}_2\text{O}(l)} \]

\[ \Delta_f S^\circ = \Delta_f H^\circ - 456.7 \text{ J K}^{-1} \text{ mol}^{-1} \]

\[ \Delta_f S^\circ = \Delta_f H^\circ - 191.61 \text{ J K}^{-1} \text{ mol}^{-1} - 2(130.684 \text{ J K}^{-1} \text{ mol}^{-1}) = -456.7 \text{ J K}^{-1} \text{ mol}^{-1} \]

\[ \text{CO(NH}_2\text{)}_2 \text{(s)} + \frac{3}{2} \text{O}_2 \text{(g)} \rightarrow \text{CO}_2 \text{(g)} + 2 \text{H}_2\text{O(l)} + \text{N}_2 \text{(g)} \]

\[ \Delta_f H^\circ_{\text{CO}_2} = -393.57 \text{ kJ mol}^{-1} \]

\[ \Delta_f H^\circ_{\text{H}_2\text{O}} = 46 \text{ kJ mol}^{-1} \]

\[ \Delta_f H^\circ_{\text{N}_2} = 138.684 \text{ kJ mol}^{-1} \]

\[ \Delta_f H^\circ_{\text{H}_2} = 104.6 \text{ kJ mol}^{-1} \]

\[ \Delta_f S^\circ_{\text{urea(s)}} = \Delta_f H^\circ_{\text{urea(s)}} - \Delta_f S^\circ_{\text{H}_2\text{O}(l)} \]

\[ \Delta_f S^\circ_{\text{urea(s)}} = -393.51 + 2(-285.83) - (-639) = -333 \text{ kJ mol}^{-1} \]

\[ \text{C}_{\text{graphite}} \text{(s)} + \frac{1}{2} \text{O}_2 \text{(g)} + \text{N}_2 \text{(g)} + 2 \text{H}_2 \text{(g)} \rightarrow \text{CO(NH}_2\text{)}_2 \text{(s)} \]

\[ \Delta_f S^\circ = \Delta_f H^\circ - \Delta_f S^\circ_{\text{H}_2\text{O}(l)} \]

\[ \Delta_f S^\circ = \Delta_f H^\circ - 456.7 \text{ J K}^{-1} \text{ mol}^{-1} \]

\[ \Delta_f S^\circ = \Delta_f H^\circ - 191.61 \text{ J K}^{-1} \text{ mol}^{-1} - 2(130.684 \text{ J K}^{-1} \text{ mol}^{-1}) = -456.7 \text{ J K}^{-1} \text{ mol}^{-1} \]
\[ \Delta_f G^0 = \Delta_f H^0 - T \Delta_f S^0 = -333 - (298 \cdot (-456.7)) = -197 \text{ kJ mol}^{-1} \]
Η θερμοδιόν με την εξίσωση Σίντς έχει την \( dH = CpdT + Vdp \).

Η αλπεργήσιμη υποθέσει ότι \( dp \) και \( dT \) είναι ανεξάρτητες. Ο σύνθετος όπως το \( dp \) και το \( dT \) να μην έχουν κοινές τοποθεσίες να προειδοποιήσουμε να προκύψει το

Αποτελεί η αλπεργήσιμη θεωρία ότι \( \Delta H \) και \( \Delta V \) είναι

\[ dH = CpdT + Vdp \]

και

\[ d(\Delta H) = (\Delta C_p)dT + (\Delta V)dP \quad \Rightarrow \quad \frac{d(\Delta H)}{dP} = \frac{(\Delta C_p)}{dT} + \frac{(\Delta V)}{dT} \]

\[ \frac{dP}{dT} = \frac{\Delta H}{TAVt} \quad \Rightarrow \quad \frac{d(\Delta H)}{dT} = \frac{(\Delta C_p)(\Delta H)}{TAVt} \quad \Rightarrow \]

\[ \frac{d(\Delta H)}{dT} = \frac{(\Delta C_p) + \frac{\Delta H}{T}}{T} \]

Αποτελεί η αλπεργήσιμη θεωρία ότι \( \Delta H \) και \( T \)

\[ \frac{d(\Delta H)}{dT} = \frac{1}{T} \frac{d(\Delta H)}{dT} + (\Delta H) \left(-\frac{1}{T^2}\right) \quad \Rightarrow \]

\[ \frac{d(\Delta H)}{dT} = \frac{1}{T} \left[(\Delta C_p) + \frac{\Delta H}{T^2}\right] - \frac{\Delta H}{T^2} = \frac{1}{T} \left[(\Delta C_p) - \frac{\Delta H}{T^2}\right] \]

\[ \frac{d(\Delta H)}{dT} = \frac{(\Delta C_p)}{T} \quad \Rightarrow \quad \frac{d(\Delta H)}{dT} = \Delta CpdHdT \]
καταβρέχω το Σιένεζης φλογιά το βελόβολο
και το εριστό εικόνα υπέρ ατ 36 Τορρ και 55 °C
χαρακτηρίζοντας το σποτάκ
\[ \Delta H_{\text{fus}} = 10.6 \text{ kJ mol}^{-1} \]
\[ \Delta H_{\text{vap}} = 30.8 \text{ kJ mol}^{-1} \]
\[ \epsilon(l) = 0.879 \text{ g cm}^{-3} \]
\[ \epsilon(s) = 0.891 \text{ g cm}^{-3} \]
\[ \frac{\epsilon(l)}{\epsilon(s)} = \frac{0.879}{0.891} \]

Στερεό - Υγρό

\[ P = p^* + \frac{\Delta H_{\text{fus}}}{\Delta H_{\text{vap}} V} \ln \left( \frac{T}{T^*} \right) \] (1)

Υγρό - Στερεό

\[ P = p^* e^{-x}, \quad x = \frac{\Delta H_{\text{vap}}}{R} \left( \frac{1}{T} - \frac{1}{T^*} \right) \] (2)

Στερεό - Στερεό

\[ P = p^* e^{-x}, \quad x = \frac{\Delta H_{\text{subl}}}{R} \left( \frac{1}{T} - \frac{1}{T^*} \right) \] (3)

\[ \Delta H_{\text{subl}} = \Delta H_{\text{fus}} + \Delta H_{\text{vap}} = 30.8 + 10.6 = 41.4 \text{ kJ mol}^{-1} \]

\[ \Delta H_{\text{fus}} V = \frac{M B_{\text{C}_6\text{H}_6}}{e(l)} - \frac{M B_{\text{C}_6\text{H}_6}}{e(s)} = 7.8 - 7.8 = 1.2 \text{ cm}^3 \text{ mol}^{-1} \]

0. Χρησιμοποιώ την ίδια εικόνα και το θερμό επίπεδο (p*, T*) = (36 Τορρ, 55 °C) = (36 Τορρ, 878.15 K)
1 Torr = 133.3 Pa

(2) \[ p = \frac{36T + 10.6 \text{ kJ mol}^{-1}}{1,2 \cdot 10^{-6} \text{ m}^3 \text{ mol}^{-1}} \ln \frac{T}{278.5} = T \]

\[ p = 36 \text{Torr} + 8.8 \cdot 10^9 \text{ Pa} \cdot \ln \left( \frac{T}{278.5} \right) = 36 \text{Torr} + 6.6 \cdot 10^4 \text{Torr} \]

(3) \[ x = \frac{30.8 \text{ kJ mol}^{-1}}{8.314 \text{ J K}^{-1} \text{ mol}^{-1}} \left( \frac{1}{T} - \frac{1}{278.5} \right) \]

\[ p = 36 \cdot e^{-3705 \cdot \left( \frac{1}{T} - \frac{1}{278.5} \right)} \]

(4) \[ x = \frac{41.4 \text{ kJ mol}^{-1}}{8.314 \text{ J K}^{-1} \text{ mol}^{-1}} \left( \frac{1}{T} - \frac{1}{278.5} \right) \]

\[ p = 31.4 \cdot e^{-4980 \cdot \left( \frac{1}{T} - \frac{1}{278.5} \right)} \]
4.3

Υπολογίστε τις δύο φόρμες χαρακτηριστικών της χημικής συνθήκης

ως έμφασης θερμοκηπίου, όταν έχει διαφορά επιρροής και

τον χαρακτηριστικό της θερμοκηπίου του H2O (b) ως κανονικό

cύκλο της (c) κατασκευής της χημικής συνθήκης του

υπόθεση μινωτήρα (επού 60°) -5°C ως βάρος και τον

τρόπο για να επιλεγεί η χημική συνθήκη με


\[
(a) \quad \frac{\Delta H (l)}{\Delta T} = \frac{\Delta H (s)}{\Delta T} = -S_m (l) = -S_m (s)
\]

\[
= - \Delta_{\text{fus}} S = - \frac{\Delta_{\text{fus}} H}{T_{\text{fus}}} = - \frac{6 \text{kJ mol}^{-1}}{273 \text{°K}} = -22 \text{ J K}^{-1} \text{mol}^{-1}
\]

(b) \quad \frac{\Delta H (g)}{\Delta T} - \frac{\Delta H (l)}{\Delta T} = -S_m (g) + S_m (l) =

\[
= - \Delta_{\text{vap}} S = - \frac{\Delta_{\text{vap}} H}{T_{\text{boil}}} = - \frac{40.6 \text{kJ mol}^{-1}}{373 \text{°K}} = -109 \text{ J K}^{-1} \text{mol}^{-1}
\]

\[
(c) \quad dh = \frac{dH}{dT} \, dT \approx \Delta H = \frac{dH}{dT} \, \Delta T = -S_m \Delta T
\]

\[
\Delta H(l) - \Delta H(s) = \mu_e(-5^\circ C) - \mu_e(0^\circ C) - \mu_s(-5^\circ C) + \mu_s(0^\circ C)
\]

\[
= - \left[ S_m (l) - S_m (s) \right] \, \Delta T = -5^\circ C \times (-22 \text{ J K}^{-1} \text{mol}^{-1}) = -110 \text{ J mol}^{-1}
\]
Για το εννέα κρύσταλλο του ιόντου 
η συχνότητα είναι 6.9. 

Δύναμη ερήμων 2 mm υπάρχει στο 
βελονί 8 cm και υπό επιφάνεια 
του νερού είναι διεισδύει. Ποιο θάλαμο είναι εξίσου με 

φυσικής και το από κάθε χριστιανική να επιλέξετε το φίλο 

Διατύπωση για τον εκπαιδευτικό 

\[ \frac{P_A}{P_{\text{atm}} + \rho g h} = \frac{28}{1} \]

\[ P_A = P_{\text{atm}} + \rho g h + \frac{28}{1} \]

\[ P_A = 10^5 P_x + 1000 \text{kg/m}^2 \cdot 10 \text{m/s}^2 \cdot 0.08 \cdot \frac{2 - 72 \cdot 10^{-3}}{0.002} \]

\[ = 10^5 P_x + 800 P_x + 146 P_x = 1.00946 \cdot 10^5 P_x \]
\[
\text{At } 15^\circ C \text{ and } 35^\circ C \text{ silver and } \text{Au} \text{ are in equilibrium:}
\]
\[
\log \left( \frac{p}{1 \text{ Torr}} \right) = 8.750 - \frac{1625}{T} \quad \text{Yield: silver (K)}
\]

\[\text{Use equation 8.1 and } \Delta H_{\text{vap}} \text{ to calculate } \Delta H_{\text{vap}} \text{ for } \text{Au}. \]

\[\Delta H_{\text{vap}} = 34.1 \text{ kJ mol}^{-1}\]
(b) To determine the bath temperature of a gas mixture of
\[ p = 1 \text{ atm} = 760 \text{Torr} \]

\[ \log(760) = 8.750 - \frac{1625}{T_b} \quad \Rightarrow \]

\[ 2.88 = 8.75 - \frac{1625}{T_b} \quad \Rightarrow \]

\[ 5.87 = \frac{1625}{T_b} \quad \Rightarrow \]

\[ T_b = \frac{1625}{5.87} = 276.8 \degree \text{C} \]
(a) Φιλάτο είναι οτέχος, λέρος, περιοχή με υψόμετρο 4-3 = 1

(b) Φιλάτο είναι οτέχος, λέρος, περιοχή με υψόμετρο 2-2+2 = 2

(μπορείται να τονίσουμε άλλες μεταβλητές)
E6.4 Το ρεύμα και το τολκόδρομο εξασφαλίζοντας σχεδόν την ισορροπία δύνατον. Σημειωθεί ότι η θερμοκρασία του ρεύματος είναι 99,9 kPa και το τολκόδρομο 8,9 kPa. Το Συστήμα ορίζεται με την λειτουργία της εξωτερικής πίεσης και με την ύδατο. Υποθέσεις:
(a) η πίεση της εξωτερικής κρίσης (b) των συντεχνικών αλλά
ευκαιριών του στρώματος (c) της τέχνης των διάφορων εργασιών. Υποθέσεις ότι υπάρχουν τεχνικές αποξείδωσης
όλης της ζύμη και της θερμοκρασίας είναι ισχυρές έξω από το 20 °C.

(α) Ισορροπία πίεσης

\[ Z_{\text{B6}} = Z_{\text{TO1}} = 0.5 \]

\[ P = X_{\text{B6}} P_{\text{B6}} + X_{\text{TO1}} P_{\text{TO1}} = 0.5 \times 9.9 \text{ kPa} + 0.5 \times 2.9 = 6.4 \text{ kPa} \]

(β)

\[ P_{\text{B6}} = y_{\text{B6}} \cdot P \quad \Rightarrow \quad y_{\text{B6}} = \frac{P_{\text{B6}}}{P} = \frac{6.4}{0.5} = 12.8 \text{ kPa} \]

\[ y_{\text{B6}} = \frac{P_{\text{B6}}}{P} = \frac{6.4}{0.5} = 12.8 \text{ kPa} \]

(γ)

\[ Z_{\text{B6}} = Z_{\text{B6}} = 0.5 \]
\[ y_A = \frac{x_A \cdot p^*_A}{p^*_B + (p^*_A - p^*_B) \cdot x_A} \]

Let \( p^*_B \), \( x_A \)

\[ x_A \cdot p^*_A = y_A \cdot p^*_B + x_A \cdot y_A \cdot (p^*_A - p^*_B) \Rightarrow \]

\[ x_A \cdot p^*_A - x_A \cdot y_A \cdot (p^*_A - p^*_B) = y_A \cdot p^*_B \Rightarrow \]

\[ x_A \left[ p^*_A - y_A \cdot (p^*_A - p^*_B) \right] = y_A \cdot p^*_B \Rightarrow x_A = \frac{y_A \cdot p^*_B}{\left[ p^*_A - y_A \cdot (p^*_A - p^*_B) \right]} \]

\[ x_{P617} = \frac{y_{BG13} \cdot p^*_B}{\left[ p^*_B - y_{BG13} \cdot (p^*_B - p_{20}) \right]} = \]

\[ = \left( \frac{0.5}{3.9} \cdot \frac{2.9}{k_p} \right) = 0.23 \]

\[ 9.9 \cdot \frac{k_p}{0.5} \cdot \left( 2.9 - 9.9 \right) \]

\[ x_{20} = 1 - 0.23 = 0.77 \]
\[ dS = ds_a + ds_b = 0 \]

Given \( \alpha \) and \( \beta \) conditions:

\[ U_a + U_b = c \quad \text{and} \quad V_a + V_b = c \]

\[ dU_a = -dU_b \quad \text{and} \quad dV_a = -dV_b \]

The differential equation results in:

\[ ds = (\frac{dS_a}{dU_a})dU_a + (\frac{dS_b}{dU_b})dU_b + (\frac{dS_a}{dV_a})dV_a + (\frac{dS_b}{dV_b})dV_b \]

Further:

\[ dU = \left( \frac{dU}{dS} \right)U + \left( \frac{dU}{dV} \right)V \quad \text{and} \quad dV = \left( \frac{dV}{dS} \right)U - \left( \frac{dV}{dU} \right)V = -p \]

Considering:

\[ ds = \left( \frac{1}{T_a} - \frac{1}{T_b} \right)dU_a + \left( \frac{P_a}{T_a} - \frac{P_b}{T_b} \right)dV_a = 0 \]

Using:

\[ \left( \frac{dS}{dU} \right)_U \left( \frac{dV}{dU} \right)_S \left( \frac{dU}{dS} \right)_V = -1 \]

\[ \left( \frac{dS}{dV} \right)_U = -\frac{1}{\left( \frac{dV}{dS} \right)_U} = -\frac{1}{\left( \frac{dU}{dS} \right)_V} \]

\[ = -\left( \frac{dU}{dV} \right)_S \left( \frac{dS}{dV} \right)_U = -\frac{p}{T} \]

\[ \text{then} \quad dU_a = -dU_b \quad \text{and} \quad dV_a = -dV_b \]

Finally:

\[ \frac{1}{T_a} - \frac{1}{T_b} = 0 \quad \text{and} \quad \frac{P_a}{T_a} - \frac{P_b}{T_b} = 0 \]

\[ \Rightarrow T_a = T_b \quad \text{and} \quad P_a = P_b \]


Το κατάλογο των γενικών ρυθμών παραγγελίας και ολοκλήρωσης είναι:

\[ T_f(\text{Bi}) = 544.5 \text{ K} \quad T_f(\text{Cd}) = 594 \text{ K} \]

\[ ΔH_f(\text{Bi}) = 10.88 \text{ kJ mol}^{-1} \quad ΔH_f(\text{Cd}) = 6.07 \text{ kJ mol}^{-1} \]

Το κέντρο κεντρώνεται κοντά στα κεντρικά γράμματα. Καμία αποτύπωση κειμένου.

Απο κατάλογο των γενικών ρυθμών παραγγελίας και ολοκλήρωσης είναι:

\[ ΔT = K' \times x \quad \text{où} \quad K' = \frac{RT^2}{ΔH_{fus}} \]

\[ \frac{8314 \text{ JK}^{-1} \text{ mol}^{-1} \times (544.5 \text{ K})^2}{10.88 \times 10^2 \text{ J mol}^{-1}} = 227 \text{ K} \]

\[ x_{\text{Bi}} = 0 \text{ kαμπήλιο} \]

\[ \frac{RT^2}{ΔH_{fus}} = \frac{8314 \times 594.5}{6.07 \times 10^3} = 483 \text{ K} \]

\[ T_f(\text{Bi}) = T_f(\text{Cd}) - ΔT \]

\[ ΔT = 227 \times \text{Bi} \text{ Bi}_2 \]

\[ T_f(\text{Cd}) = T_f(\text{Kas}) - ΔT \]

\[ ΔT = 483 \times \text{Kas} \]
Σκεφτείτε για 160ρωτή το σύστημα NH₃ με H₂O(l). Πήγαινε είναι να επαναστατήσει και να μεταβολίσει το 60ρωτή H₂O.

\[
\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4^+ + \text{OH}^- \\
2\text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{OH}^- \\
\]

με συνιστώσεις \(\text{NH}_4^+ + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{NH}_3\) και \(\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{OH}^-\). Εντός συστήματος, οι συνιστώσεις και οι συναρτήσεις και του συστήματος πρέπει να παρατηρηθούν.

\[
[\text{NH}_4^+] + [\text{OH}^-] + [\text{H}_3\text{O}^+] = 0 
\]

ζερ τα χαρακτήρα γίνεται 5.

ο1 κωνοκήτες 3 ζερ τα συναρτήσεις είναι.

\(C = 5 - 3 = 2\)


\[F = 2 - 1 + 2 = 3\]
Η σύγκριση φύσεων οριο-οριο διατελέστρευσης και την κλίση δίδυμα εξετάζει

(1) Να υποθέσουμε ότι η διάδοση μιας φύσεως κατά 0.75 mol

συνδυάζεται κατά 0.25 mol entropic συντελεστά με 295.0 K σε ίση θερμοκρασία

όταν περίπου υπάρχει διαμορφωμένη ή

να εξισορροπεί με την κύλη με θέματα Φυσικής.

Xi: 0,75

0,75 + 0,25

Από την κανόνα του Φουκούλο:


0,804 - 0,75

0,75 - 0,168

= 0,093

αποτελείται με τιμή θερμή 62 oC

και διαμορφώνεται ως ένα χρήσιμα

πρόταση, επεξεργασία 202 oC.
6.1 Στα χώρα 90 °C η πίεση είναι 20 kPa, ενώ στο 1,2 μεθανίζοντας 1,3 και 18 kPa.
Ποιά είναι η ζύγωση του υγρού μιξτού της πεπεμβατικής σε επίπεδο 90 °C όπως και πίεση ως 19 kPa. Ποια είναι η ζύγωση του υγρού παράγοντα;

Διάλυμα

\[ P = x_{12} P_{12}^* + P_{13}^* - P_{13}^* x_{12} \Rightarrow \]

\[ P = x_{12} (P_{12}^* - P_{13}^*) + P_{13}^* \Rightarrow \]

\[ x_{12} = \frac{P - P_{13}^*}{P_{12}^* - P_{13}^*} = \frac{19 - 18}{20 - 18} = 0,5 \]

\[ y_{12} = \frac{P_{12}}{P} = \frac{x_{12} P_{12}^*}{x_{12} P_{12}^* + (1 - x_{12}) P_{13}^*} = \]

\[ = \frac{0,5 \cdot 20}{18 + (20 - 18) \cdot 0,5} = 0,526 \]

\[ y_{13} = 1 - 0,526 = 0,474 \]
7.23 Μπορεί να χρησιμοποιηθεί η NH₃ ως χημικό αντιπεριστα
tικό σε fuel cell; Ποιες είναι οι φυσικές αλλαγές έκφρασης και
σε κατάσταση 100 g του σώματος; ΔΔG° = -16.45 kJ mol⁻¹

Η σύνθεση είναι της εξής απόψεις: Η

N₂ + 3 H₂ → 2NH₃

ΔrG° = ΔrG°₉ NH₃ - 0 - 3(0) = -16.45 kJ mol⁻¹
Από τη σύνθεση υπολογίζουμε το ποσό NH₃ που μπορεί να έχει
6 ω fuel cell

100 g N₂
28
= 3.57 mol N₂

1 mol N₂ μειώνεται προς 2 mol NH₃

3/25

x = 6.25 mol NH₃

x mol 16.45 kJ mol⁻¹ = 117.4 kJ

Πρέπει να έχει τη δύναμη για να εκπεματιστεί και να αντισταθεί τη δύναμη της χημικής ενέργειας.
Η ερώτηση: Παρατηρήθηκε ότι το κίνητρο με έκφραση \( b_k = -2,04 + (-1176 \text{ } \text{k})(\frac{1}{T}) + 2,1 \times 10^{-7} \text{ } \text{k}^2 \left(\frac{1}{T}\right)^2 \) κατάφερε να έχει 400 Κ και 500 Κ

Υπολογίστε την πρώτη ανάλυση κατάφερμας χώρος 450 Κ

Την πρώτη ανάλυση \( \Delta G^\circ \) και \( \Delta r G^\circ \)

\[
\frac{\partial \ln k}{\partial \left(\frac{1}{T}\right)} = -1176 + 3 \cdot 9 \times 10^{-7} \left(\frac{1}{T}\right)^2 = -\frac{\Delta r H^\circ}{R}
\]

\[
T_1 = 450 \text{ } \text{K}
\]

\[
-1176 + 6,3 \cdot 10^{-7} \left(\frac{1}{450}\right)^2 = -865 \text{ } \text{K}
\]

\[
-865 = -\frac{\Delta r H^\circ}{8,314} \Rightarrow \Delta r H^\circ = 7,92 \text{ } \text{kJ mol}^{-1}
\]

\[
\Delta r G^\circ = RT \ln k = -8,314 \cdot 450 \cdot \ln \left[-\frac{3,04}{450} + \frac{2,1 \times 10^{-7}}{450^2}\right] = 16,6 \text{ } \text{kJ mol}^{-1} = \Delta r G^\circ
\]

\[
\Delta r G^\circ = \Delta r H^\circ - T \Delta r S^\circ \Rightarrow \Delta r S^\circ = \frac{\Delta r H^\circ - \Delta r G^\circ}{T}
\]

\[
\Delta r G^\circ = \frac{k_2 - 16,6}{450} = -21 \text{ } \text{kJ mol}^{-1} = \Delta r S^\circ
\]
Η πρόταση ενεργεί δράσης $\Delta r G^0 \to \text{NH}_3(\text{g})$ έχει $-16.5 \text{kJ mol}^{-1}$.

298 Κ ένα μέρος $\Delta r G$ μας αντιστοιχεί. Οι άτομο $N_2$, $H_2$ και $\text{NH}_3$ έχουν $3$ ατού 1, $2$ ατού 4 ατού αναλογίας. Μετά, είναι η απόδραση κατεύθυνσις $\Delta G < 0$;

\[ \frac{1}{2} N_2 + \frac{3}{2} H_2 \rightarrow \text{NH}_3 \]

Για το $\Delta r G^0$ 1603 μπροστά $\Delta r G^0$ περίπου $\Delta G^0$ περίπου $\text{NH}_3$

\[ 2\Delta r G = \Delta G^0 + R T \ln \frac{P_{\text{NH}_3}}{(P_{N_2})^{1/2}(P_{H_2})^{3/2}} \]

\[ = -1.5 + 298.8.314.10^{-3} \ln \frac{40}{(3.0)^{1/2}(1.0)^{3/2}} = -14.4 \text{kJ mol}^{-1} \]

\[ 2\Delta r G < 0 \] και απόδραση κατεύθυνσις $\Delta G < 0$

προς τα δεξιά.
(α) \[ \text{CaCO}_3 (s) \rightarrow \text{CaO} (s) + \text{CO}_2 \quad \Delta r G^0 = RT \ln K \Rightarrow \]
\[ -\Delta r G^0 = RT \ln \left( \frac{P_{\text{CO}_2}}{P_0} \right) \quad P_{\text{CO}_2} = 1 \text{ atm open box} \]
\[ \Delta r G^0 = \Delta r H^0 - T \Delta r S^0 \Rightarrow \]
\[ 0 = \Delta r H^0 - T \Delta r S^0 \Rightarrow T = \frac{\Delta r H^0}{\Delta r S^0} \]
\[ \Delta r H^0 = -635,1 - 373,5 - (-1206,9) = 178,3 \text{ kJ mol}^{-1} \]
\[ \Delta r S^0 = 79,75 + 213,7 + 99,9 = 160,6 \text{ JK}^{-1} \text{mol}^{-1} \]
\[ T = \frac{178,3 \times 10^3 \text{ J mol}^{-1}}{160,6 \text{ JK}^{-1} \text{mol}^{-1}} = 1110 \text{ K} \]

(β) \[ \text{CuSO}_4 \cdot 5\text{H}_2\text{O} (s) \rightarrow \text{CuSO}_4 (s) + 5\text{H}_2\text{O} (s) \]
\[ \Delta r H^0 = (-771,3) + 5(-241,8) - (-2279,7) = 299,24 \text{ kJ mol}^{-1} \]
\[ \Delta r S^0 = (169) + 5(188,83) - 300,4 = 752,75 \text{ JK}^{-1} \text{mol}^{-1} \]
\[ T = \frac{299,24 \times 10^3 \text{ J}}{752,75} = 398 \text{ K} \]
7.3  

Υπολογίστε τις πρώτες ενέργειες Gibbs και τις 

επίπεδες θερμοκρασίες (a) για τις 1800 K και (b) για 50 °C

για την αντίδραση:

\[ \text{CH}_4(g) + 3 \text{Cl}_2(g) \rightleftharpoons \text{CHCl}_3(l) + 3 \text{HCl}(g) \]

Υπολογίστε τις ενέργειες Gibbs και τις επίπεδες θερμοκρασίες για την αντίδραση:

\[ \Delta f G^\circ(\text{CHCl}_3, l) = -73,66 \text{kJ mol}^{-1} \quad \Delta f G^\circ(\text{HCl}, g) = -95,72 \text{kJ mol}^{-1} \]

\[ \Delta f G^\circ(\text{CH}_4, g) = -50,72 \text{kJ mol}^{-1} \]

\[ \Delta f H^\circ(\text{CHCl}_3, l) = -134,81 \text{kJ mol}^{-1} \quad \Delta f H^\circ(\text{HCl}, g) = -98,31 \text{kJ mol}^{-1} \]

(4)

\[ \Delta r G^\circ = \Delta f G^\circ(\text{CHCl}_3, l) + 3 \Delta f G^\circ(\text{HCl}, g) - \Delta f G^\circ(\text{CH}_4, g) = -73,66 + 3(-95,72) - (-50,72) = -308,84 \text{kJ mol}^{-1} \]

\[ -\Delta r G^\circ = RT \ln k \Rightarrow \ln k = -\frac{\Delta r G^\circ}{RT} = \frac{-(-308,84 \cdot 10^3 \text{kJ mol}^{-1})}{8,314 \text{ J K}^{-1} \text{ mol}^{-1} \cdot 298 K} \]

\[ = 124,6 \Rightarrow k = e^{124,6} = 1,3 \times 10^{54} \]

(b)

\[ \Delta r H^\circ = \Delta f H^\circ(\text{CHCl}_3, l) + 3 \Delta f H^\circ(\text{HCl}, g) - \Delta f H^\circ(\text{CH}_4, g) = -124,47 + 3(-92,31) - (-74,81) = -336,6 \text{kJ mol}^{-1} \]

\[ \ln k = \ln \left(1,3 \times 10^{54}\right) - \left(-336,6 \right) \cdot 10^3 \cdot \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \]

\[ = 123,6 - 10,5 = 113,1 \]

\[ k = e^{113,1} = 35 \times 10^{49} \]
\[ \Delta r G^0 (50^\circ) = -RT \ln K (50^\circ) = -8,514 \cdot 323 \cdot 114,1 = 306,5 \text{kJ/mol} \]
(7.2) \( \text{To Prs dist. 24\%}} \) \( \text{over 1600 K kai loctn axm.} \) \( \text{1800 K} \), \( \text{b) } \Delta G^\circ \text{ kai } \delta \) \( \text{2 k J mol}^{-1} \text{, 2000 K} \text{ } \)

\[ \Delta H^\circ = +112 \text{ k J mol}^{-1} \]

\[ \frac{\text{K}_{2} \text{Fe} \text{Fe}}{\text{Fe} \text{Fe}} \]

\[ \frac{1 - \alpha}{1 + a} = \frac{2x}{1 + a} \]

\[ \frac{(1-x)p}{1+a} \]

\[ K = \left( \frac{P_{Br}}{P_{0}} \right)^2 = \frac{P_{Br}^2}{P_{Br} \cdot P_{0}} = \left( \frac{2xP}{1+a} \right)^2 = \frac{4x^2p^2 (1+a)}{(1+a)^2 P(1-q)} = \frac{4x^2p^2 (1+a)}{P(1-q)P_0 (1-q)} \]

\[ P = P_0 = \frac{4 \alpha^2}{(1-x)^2} = \frac{4 \cdot (0.24)^2}{1 - (0.24)^2} = 0.2448 \]

\[ \Delta G^\circ = -RT \ln K = -(8.314 \text{JK} \cdot \text{mol}^{-1}) \cdot 1600 \text{ K} \cdot \ln(0.2448) \]

\[ = 19 \text{ kJ mol}^{-1} \]
\[
\left(\frac{\Delta H}{RT}\right) \Rightarrow \\
\frac{k_2}{k_1} = \int_{T_1}^{T_2} \frac{e^{\Delta H/kT}}{RT} \, dT = \frac{1}{T_2} - \frac{1}{T_1} \\
\Rightarrow \ln k_2 - \ln k_1 = -\frac{\Delta H}{k} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \\
\Rightarrow \ln k(2273\,^oK) = \ln k(1600\,^oK) = \frac{112,000\, J/mol}{8,314\, K^{-1}\, mol^{-1}} \cdot \ln(0.2448) \\
\left(\frac{1}{2273\,^oK} - \frac{1}{1600\,^oK}\right) = 1.08 \Rightarrow k = e^{1.08} = 2.96
Δυνάμεις:

\[ \Delta \text{mix } S = -n R \left( x_A \ln x_A + x_B \ln x_B \right) \]

\[ \Delta \text{mix } S = -n R \left( x_A \ln x_A + \left(1-x_A\right) \ln \left(1-x_A\right) \right) \]

Στο βίβλο και υπονόηση μαζί με τον

\[ \frac{\Delta \text{mix } S}{\partial x_A} \]

νέο πλήρος και προέλευση πράξης.

\[ d \text{mix } S = -n R \left( x_A \ln x_A + x_A \cdot \frac{1}{x_A} \right) \]

\[ - \frac{1}{1-x_A} \left(1-x_A\right) \right) = -n R \left[ \ln x_A + \ln \left(1-x_A\right) \right] \]

\[ \Rightarrow \ln \left(x_A\right) - \ln \left(1-x_A\right) = 0 \Rightarrow \ln \frac{x_A}{1-x_A} = 0 \]

\[ \Rightarrow \frac{x_A}{1-x_A} = 1 \Rightarrow x_A = 1-x_A \Rightarrow 2x_A = 1 \Rightarrow \]

\[ x_A = \frac{1}{2} \]
Η επιπλέοντιση πήρε τον ευθύγμονα ρευστήτηρο έτσι ότι

99 kPa (κατά 288 K). Να υπολογίσετε το αναλογικό ρύθμισμα

κόλασης και ποσότητας νερού.

\( k_f = 1.86 \text{ kJ mol}^{-1} \text{ kg} \)

\( e = \frac{10^7 \text{ kg m}^3}{\text{H}_2\text{O}} \)

\( R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \)

\[
\Delta T = k_f \cdot \frac{m}{\rho} = \frac{m}{\rho \cdot H_2O} = \frac{V \cdot \rho}{\rho \cdot H_2O}
\]

\[
\Pi V = \frac{n \cdot R \cdot T}{V} \rightarrow \frac{n}{V} = \frac{\Pi}{RT}
\]

\[
\frac{m}{RT} = \frac{\Pi}{RT} \cdot \rho \cdot \Delta T = k_f \cdot \frac{\Pi}{RT} \cdot \Delta T
\]

\[
\Delta T = 1.86 \text{ kJ mol}^{-1} \text{ kg} \cdot 99 \text{ kPa}
\]

\[
8.314 \text{ J K}^{-1} \text{ mol}^{-1} \cdot 288 \cdot \frac{10^3 \text{ kg}}{\text{m}^3}
\]

\[
= 0.077 \text{ K}
\]

'Απο την αναλογία της μέτρησης υπάρχει σύμφωνα με

\( \Delta v \) = 0.077 \text{ K}

Συνήθως μετρήσεως

ουδέποτε \( 0 \text{ °C} \)
5.14 Το Βενζόλιο είναι ένα τοποθετικό οξεύωνο Αυστραλίας. Συνήθως, το αντίστοιχο ζεύγος του καθένας Βενζόλιου έχει 80.1 °C. Προοπτικά, θα ξεκινήσει η χημική άνθιση καθένας Βενζόλιου με τον ίσο με τον ίσο καθένας Βενζόλιου, όταν η εκφράση

\[ X = 0.30 \] αποτελεί ζεύγος. Αυτά οι αποτυπώματα

το Βενζόλιο είναι γνωστά είναι 0,95 και δεν δείχνουν

το κανονικό φαινόμενο.

\[ \Delta v = \frac{1}{\beta} \]

\[ \alpha_{Beu} (e) = \alpha_{Beu} (e) + 2T \ln x \beta \quad \text{(15.2.24: 0,114)} \]

\[ \alpha_{Beu} (e) = \alpha_{Beu} (e) + 8.314 \, J \cdot K^{-1} \cdot \text{mol}^{-1} \times (273 + 80) \times \ln (0.3) \]

\[ T \Delta H (e) = T \Delta H (e) = -3.536 \, J \cdot \text{mol}^{-1} \]

Λύνοντας τον θεωρητικό και τους πραγματικούς καταρροή, έχουμε Καταρροή -3.54 kJ/mol

\[ x = \frac{p}{p^*} = 0.93 - 0.3 = 28.2 \, kPa \]

\[ x \tan = 101.0 \, kPa \]
Σ 1. Οι πρώιμες υποθέσεις ότι το γονίδιο Α, B
δεν είναι υπολογιστέο μικρότερο ή
κατά παράλληλο έχει ως υλικό το
2 \( x = 0,3713 \) ι.e. 188,2 cm\(^3\) mol\(^{-1}\).
Καθώς 176,14 cm\(^3\) mol\(^{-1}\) έχουν
την ίδια χρήση του. Τώρα
καθώς η απώλεια MA = 24,1 ι.e., και MB = 198,2 ι.e., η
ευκαιρία στον θάλαμο w? έχει διέγεραι;

\[ V = V_\Delta \cdot n_A + V_B \cdot n_B \]
\[ n = n_A M_A + n_B M_B \]
\[ x_A = \frac{n_A M_A}{n_A M_A + n_B M_B} \]
\[ \frac{n_A}{n_B} = \frac{x_A M_A + x_B M_B}{x_B M_B} \]

\[ V = \frac{1000 \text{ cm}^3}{(0,3713 \cdot 24,1 + (1-0,3713) \cdot 198,2) \text{ cm}^3} \]
\[ = \frac{0,3713 \cdot 188,2 \text{ cm}^3 + (1-0,3713) \cdot 176,14 \text{ cm}^3}{0,3713 \text{ cm}^3 + 176,14 \text{ cm}^3} \]
\[ = 843,5 \text{ cm}^3 \]
\[ \Delta_{\text{mix}} G = n \, RT \left( x_A \ln x_A + x_B \ln x_B \right) \]

\[ n_{\text{Argon}} = n_{\text{Neon}} \text{ and } x_{\text{Argon}} = x_{\text{Neon}} = 0.5 \]

\[ n = n_{\text{Argon}} + n_{\text{Neon}} = \frac{PV}{RT} \]

\[ \Delta_{\text{mix}} G = \frac{PV}{RT} \left( x_A \ln x_A + x_B \ln x_B \right) \Rightarrow \]

\[ \Delta_{\text{mix}} G = 100 \, \text{kPa} \times \frac{250}{10^6 \, \text{m}^3} \left( \frac{1}{2} \ln \frac{1}{2} + \frac{1}{2} \ln \frac{1}{2} \right) \]

\[ = \frac{10^5 \times 25 \, \text{Pa}}{10^6 \, \text{m}^3} (- \ln 2) = -17.3 \, \text{Joule} \]

\[ \Delta_{\text{mix}} S = - \frac{\Delta_{\text{mix}} G}{T} = \frac{17.3 \, \text{J}}{273} = 0.063 \, \text{JK}^{-1} \]
Τα καθιστικά όπου \( N_2 \) και \( O_2 \) ζημώνεται

\[ P_{R} = k_{B} \]

\( P_{R} \) είναι η πίεση του \( N_2 \) ή \( O_2 \) στον καθιστικό χώρο και \( k_{B} \) η 

\[ X_{R} \]

\( X_{R} \) η θεία συνθήκη και \( k_{R} \) η διαχωριστική.

\( k_{B} \) είναι ο κλασικός Ηνίου.

Προεξιτής είναι που \( P_{x} \cdot x = P_{x} \cdot x_{0} \).

\[ P_{x} = 1 \text{ atm} \]

\[ P_{N_2} = 1 \text{ atm} \cdot 0,78 = 101 \text{ kPa} \cdot 0,78 = 78,8 \text{ kPa} \]

\[ P_{O_2} = 1 \text{ atm} \cdot 0,21 = 101 \text{ kPa} \cdot 0,21 = 21,2 \text{ kPa} \]

\[ X_{O_2} = \frac{P_{O_2}}{k_{O_2}} = \frac{21,2 \text{ kPa}}{7,99 \cdot 10^{4} \text{ kPa kg mol}^{-1}} = 2,678 \cdot 10^{-4} \]

\[ = 0,2678 \text{ mmol kg}^{-1} \]

\[ X_{N_2} = \frac{P_{N_2}}{k_{N_2}} = \frac{78,8 \text{ kPa}}{1,56 \cdot 10^{5} \text{ kPa kg mol}^{-1}} = 0,067 \text{ mmol kg}^{-1} \]
Αποτέλεσμα ότι \( p^* (\text{H}_2\text{O}) = 0.02308 \text{ ktn} \)
και \( p (\text{H}_2\text{O}) = 0.02239 \text{ ktn} \) είναι διαφορικά σε

οριζόντια 0.122 kg

και είναι προς \( \Sigma \) συνθέσεις

διαλύματος \( (M=24.1 \text{ g mol}^{-1}) \) από \( 0.920 \text{ kg} \) \( \text{H}_2\text{O} \) και 0.980 kg \( \text{H}_2\text{O} \) στα 

293 K.

Υπολογίστε τα αντίστοιχα για \( \Sigma \) συνθέσεις και \( \Sigma \) συστοιχία.

Ηρεμία των \( \Sigma \) \( \text{H}_2\text{O} \) και \( \Sigma \) συστοιχία.

\[
\chi_a = \frac{p_a}{p^*} = \frac{0.02239}{0.02308} \approx 0.97
\]

\[
\chi_a = \frac{\chi_a}{\chi_a + \chi_b}
\]

\[
\chi_a = \frac{\text{mass of water}}{\text{mass of water} + \text{mass of alcohol}}
\]

\[
\text{mass of water} = \frac{0.122 \text{ kg}}{0.241 \text{ kg mol}^{-1}} = 0.506 \text{ mol}
\]

\[
\text{mass of alcohol} = \frac{0.920 \text{ kg}}{0.018 \text{ kg mol}^{-1}} = 51.05 \text{ mol}
\]

\[
\chi_{\text{water}} = \frac{51.05}{51.05 + 0.506} \approx 0.99
\]

\[
\chi_{\text{water}} = \chi_{\text{water}} \times \chi_{\text{water}} \Rightarrow \chi_{\text{water}} = \frac{0.97}{0.99} \approx 0.98
\]