AUTHOR INDEX, VOLUME , 2004


Arda. S. (with, İ. Morgil, N. Seçken, S.Yavuz, & Ö. Özyalçın Oskay) The influence of computer-assisted education on environmental knowledge and environmental awareness: (2) 99-110.


Bodner, G. (with M. Orgill) What research tells us about using analogies to teach chemistry: (1) 15-32.

Bucat, R. Pedagogical content knowledge as a way forward: Applied research in chemistry education: (3) 215-228.


Dumon, A. (avec A. Laugier) L’ équation de réaction: Un nœud d’obstacles difficilement franchissable: (1) 51-68.

Dumon, A. (with A. Laugier) The chemical equation: A cluster of problems which are difficult to overcome: (3) 327-342.

Hofstein, A. The laboratory in chemistry education: Thirty years of experience with developments, implementation, and research: (3) 247-264.


Dori, Y.J. (with A. Lubezky & U. Zoller) HOCS-promoting assessment of students’ performance on environment-related undergraduate chemistry

Eichler, M.L. (with J.C. Del Pino, & L.Da C. Fagundes) Development of cognitive conducts during a computer simulated environmental analysis: (2) 157-174.

Eybe, H. (with H.-J. Schmidt) Group discussions as a tool for investigating students' concepts: (3) 265-280.


Fagundes, L.Da C. (with M.L. Eichler & J.C. Del Pino) Development of cognitive conducts during a computer simulated environmental analysis: (2) 157-174.

Justi, R. (with J. K. Gilbert, J.H. Van Driel, O. De Jong, & D.F. Treagust) Securing a future for chemical education (1) 5-14


Laugier, A. (with A. Dumon) The chemical equation: A cluster of problems which are difficult to overcome: (3) 327-342.


Mahaffy, P. The future shape of chemistry education: (3) 229-245.


Mavropoulos, A. (with M. Roulia, and A.L. Petrou) An interdisciplinary model for teaching the topic “foods”: A contribution to modern chemical education: (2) 143-155.

Morgil, İ. (with S. Arda, N. Seçken, S.Yavuz, & Ö. Özyalçin Oskay) The influence of computer-assisted education on environmental knowledge and environmental awareness: (2) 99-110.


Orgill, M. (with G. Bodner) What research tells us about using analogies to teach chemistry: (1) 15-32.

Özyalçin Oskay, Ö. (with, İ. Morgil, S. Arda, , N. Seçken & S.Yavuz) The influence of computer-assisted education on environmental knowledge and environmental awareness: (2) 99-110.


Quílez, J. A historical approach to the development of chemical equilibrium through the evolution of the affinity concept: Some educational suggestions: (1) 69-87.

Quílez, J. Changes in concentration and in partial pressure in chemical equilibria: Students’ and teachers’ misunderstandings: (3) 281-300.


Sarantopoulos, P. (with G. Tsaparlis) Analogies in chemistry teaching as a means of attainment of cognitive and affective objectives: A longitudinal study in a naturalistic setting, using analogies with a strong social content: (1) 33-50.

Schmidt, H.-J. (with H. Eybe) Group discussions as a tool for investigating students' concepts: (3) 265-280.

Seçken, N. (with, İ. Morgil, S. Arda, S.Yavuz, & Ö. Özyalçin Oskay) The influence of computer-assisted education on environmental knowledge and environmental awareness: (2) 99-110.


Tal, R.T. Using a field trip to a wetland as a guide for conceptual understanding in environmental education – A case study of a pre-service teacher’s research: (2) 127-142.
Treagust, D.F. (with O. De Jong, R. Justi, J. K. Gilbert, & J.H. Van Driel) Securing a future for chemical education (1) 5-14
Tsaparlis, G. Has educational research made any difference to chemistry teaching? (1) 3-4.
Tsaparlis, G. (with P. Sarantopoulos) Analogies in chemistry teaching as a means of attainment of cognitive and affective objectives: A longitudinal study in a naturalistic setting, using analogies with a strong social content: (1) 33-50.
Tsaparlis, G. Securing a future for CERP (Editorial) (3) 209-212.


Yavuz., S. (with İ. Morgil, S. Arda, N. Seçken & Ö. Özyalçın Oskay) The influence of computer-assisted education on environmental knowledge and environmental awareness: (2) 99-110.